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wall chirality
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Magnetic skyrmions are localized chiral spin textures, which offer great pro-
mise to store and process information at the nanoscale. In the presence of
asymmetric exchange interactions, their chirality, which governs their
dynamics, is generally considered as an intrinsic parameter set during the
sample deposition. In this work, we experimentally demonstrate that a gate
voltage can control this key parameter. We probe the chirality of skyrmions
and chiral domain walls by observing the direction of their current-induced
motion and show that a gate voltage can reverse it. This local and dynamical
reversal of the chirality is due to a sign inversion of the interfacial
Dzyaloshinskii-Moriya interaction that we attribute to ionic migration of oxy-
gen under gate voltage. Micromagnetic simulations show that the chirality
reversal is a continuous transformation, in which the skyrmion is conserved.
This control of chirality with 2–3 V gate voltage can be used for skyrmion-
based logic devices, yielding new functionalities.

Magnetic skyrmions are spin-swirling, topologically nontrivial spin
textures that hold promise for next-generation spintronic devices1–5.
Their nanometric size and efficient manipulation by electric current6

would enable high storage density and fast computational operations.
In thin multilayered ferromagnetic films, skyrmions are characterized
by circular, homochiral Néel domain walls (DWs), which are stabilized
by interfacial Dzyaloshinskii–Moriya interaction (iDMI)7,8. The sign of
the iDMI constant D sets the preferred chirality of the Néel DW9. With
our conventions, Néel DW adopts a right-handed or clockwise (CW)
chirality for D < 0 and a left-handed or counterclockwise (CCW) chir-
ality for D > 0.

Besides, chirality plays a key role in the DW dynamics driven by
spin–orbit torques9–12. In heavy-metal/ferromagnet/metal-oxide (HM/
FM/MOx) trilayers, a charge currentflowing in theHM layer generates a
transverse spin current due to the spin Hall effect whose angular
momentum is tranferred to the FM magnetization13. The resulting
spin–orbit torque moves DWs and skyrmions in a direction that

depends on their chirality and on the sign of the spin Hall angle (SHA).
It promotes the spin–orbit torque drivenmotion as an efficient tool to
locally probe the chirality of domain walls, and thus the iDMI sign. For
instance, a HM underlayer with negative SHA, such as Ta14,15, induces a
motion of CWDWs along the current density whereas CCWDWsmove
along the electron flow15.

It is generally considered that iDMI is an intrinsic parameter set
during the sample deposition. The effective iDMI in HM/FM/MOx tri-
layers is the sum of the contributions originating from the two FM
interfaces and may be adjusted by varying the FM thickness16,17,
removing the metal-oxide18, changing the type of HM19,20 or the oxi-
dation state at the FM/MOx interface

21,22. It has even been shown that
tuning the oxidation state of the FM/MOx interface can invert the iDMI
sign23. These techniques for controlling iDMI and thus DW chirality
were limited to materials engineering until the very recent experi-
mental demonstration of a dynamical and reversible control of chir-
ality by chemisorption24. However, this method is not local and
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necessitated a complex experimental setup. Controlling iDMI using a
local and application-compatible external excitation on full solid-state
devices would thus open a novel degree of freedom to efficiently
manipulate chiral spin textures such as magnetic skyrmions21.

In particular, gate voltage control of interfacial magnetic
properties25–27 offers a promising, lowpower and versatile technique to
achieve both a local and dynamical control of iDMI. It is well-
established that a gate voltage can modify the charge distribution
and tune the oxidation state at the FM/MOx interface, both mechan-
isms leading to changes in interfacial magnetic anisotropy28. The
strongest effect associated with non-volatility has been explained as
driven by O2− ionic migration towards the interface or away from it,
depending on the voltage polarity29–31. Such ionic migration is already
exploited as amechanism for resistive switching in anionicmetal-oxide
memristor devices32. This tuning of interfacialmagnetic anisotropy has
allowed controlling with a gate the creation and annihiliation of
skyrmions33–36. Furthermore, it was demonstrated that the iDMI
amplitude is reversibly tunable with a gate voltage27,37,38 due to its
interfacial nature. The possibility to electrically reverse the sign of the
iDMI would provide a versatile and reversible control of skyrmion
chirality, which could considerably improve their all-electrical, low-
power manipulation.

In this article, we demonstrate experimentally that a gate voltage
induces a local and dynamical reversal of skyrmion chirality in Ta/
FeCoB/TaOx trilayer. Moreover, we show a similar effect on chiral DWs
in a labyrinthine magnetic state, confirming our findings on magnetic
skyrmions. We show that regardless of the initial DW chirality, which is
controlled by the initial oxidation level at the FeCoB/TaOx interface, a
gate voltage with appropriate polarity is able to switch chirality back
and forth in a persistent way. This reversal is attributed to ionic

migration, and thusoxidationor reductionof theFeCoB/TaOx interface,
by the gate voltage, which results in the inversion of iDMI sign. Finally,
using micromagnetic simulations we show that an adiabatic chirality
reversal of a nanometer size skyrmion is possible in Co-based sample.
The internal structure of the DW evolves continuously from one chir-
ality to the other without skyrmion annihilation when iDMI is vanishing.

Results
Skyrmion chirality reversal with gate voltage
A schematic representation of the Ta(3)/FeCoB(1.2)/TaOx(0.85–1) tri-
layer (nominal thicknesses in nm), with 20 nm ZrO2 oxide and trans-
parent Indium Tin Oxide (ITO) electrode (see Methods), is shown in
Fig. 1a. The oxidation step after the top-Ta wedge deposition induces
an oxidation gradient at the top interface (see Fig. 1b). This gradient
induces a sign crossover of iDMI, as directly measured by Brillouin
Light Scattering (BLS, see Fig. 1c and Methods). Under zero applied
magnetic field, demagnetization of the sample occurs and labyrinthine
domains are formed. As observed by polar-Magneto-Optical Kerr-
Effect (p-MOKE) microscope, the current-induced motion (CIM) of
these DWs is inverted at the D = 0 position interpolated from BLS
measurements (see dashed line in Fig. 1b, c and Supplementary sec-
tion I). We will thus further use CIM as a tool to probe iDMI sign where
usual state-of-the art quantitative techniques, such as BLS, cannot
resolve such small iDMI values (typically around ± 10μJ/m2 in the
regions of interest marked by the triangle and star, see Fig. 1b, c and
Supplementary section VI).

In the area close to the iDMI sign crossover (star location in
Fig. 1b), an external out of plane magnetic field μ0Hext≃ 80μT stabi-
lizes magnetic bubbles of≃ 1μm diameter (white dots under ITO in
Fig. 1d, e, g, h).When a current is applied,magnetic bubbles drift in the

Fig. 1 | Skyrmion chirality reversal. a Schematic representation of the Ta/FeCoB/
TaOx trilayer with additional ZrO2 oxide and transparent ITO electrode for gate
voltage application. b Schematic cross section of the sample: the top-Ta wedge
induces an oxidation gradient at the top interface, leading to c a iDMI sign cross-
over as directly measured by BLS vs. top-Ta thickness. Error bars of ± 100MHz on
the frequency difference Δf, represented on the right axis, are due to the setup.
d, e CIM monitored during 4 s under p-MOKE microscope at the star location
shown on b for zero gate voltage and g, h for Vg = + 3.5 V, applied on ITO (the dark

rectangular region). The in-plane current density (J≃ 5 × 109 A/m2) is represented
by the white arrow and the out of planemagnetic field is μ0Hext≃ 80μT.d, e In the
initial state, skyrmions move in the direction of the current (encircled skyrmion
moving along the red arrow), indicating CW chirality (D <0), schematically
represented in f. g, hUnder the positive gate voltage, an inversion of the skyrmion
motion occurs (encircled skyrmion moving along the blue arrow), indicating a
CCW chirality (D >0), as represented in i.
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same direction confirming their skyrmionic nature and their homo-
chirality. We call them skyrmions in the following, since they share the
same topology39. Owing to the low injected current density
(J≃ 5 × 109 A/m2, see Supplementary section II), some skyrmions
remain motionless as they are probably pinned by defects.

We then used transparent electrodes to directly observe the CIM
and its inversion during or after the application of a gate voltage (See
Methods). In the initial state (Vg =0), themobile skyrmionsmove along
the current direction (speed v0V = 13.5 ± 2μm/s at J≃ 5 × 109 A/m2),
which is expected for a Néel DW with a CW chirality (see red circles in
Fig. 1d, e andSupplementary Video SV1). It is noteworthy that the effect
of the thickness gradient on the skyrmion motion is negligible, indi-
cating that current is the driving force (see Supplementary, section III).
Besides, skyrmion Hall effect is expected to be negligible due to the
small velocities in this regime of low current densities40–42. Further-
more, the continuousmotion of skyrmionswhen crossing the edges of
the electrode shows that themagnetic configuration is the same below
and around the electrode.

Skyrmion CIM is then measured while applying a positive gate
voltage on the electrode (Fig. 1g, h). We observe a progressive change:
the skyrmion speed first decreases, then the motion direction inverts,
typically after 90 s, and speed further increases and saturates. The CIM
is now along the electron flow with v+3.5V = 3.2 ± 2μm/s at J≃ 5 × 109 A/
m2 (see Supplementary, section IV, and Video SV2). Such inversion of
motion is a signature of a transition fromCWtoCCWchirality, induced
by an inversion of iDMI sign with the gate voltage. As expected, this
CIM reversal is observed only below the ITO electrode, where the
FeCoB/TaOx interface properties aremodifiedby the gate voltage. This
effect is reversible: switching the gate voltage to zero allows progres-
sively recovering the as-grownCWskyrmion chirality, on the timescale
of several minutes. Moreover, the chirality inversion is reproducible:
skyrmions in Fig. 1 have previously undergone several chirality rever-
sals. Amore detailed analysis of skyrmions trajectories of Fig. 1 (d, e, g,

h) and their inversion can be found in Supplementary, section IV, as
well as the results of an experiment over a larger number of skyrmions,
allowing extensive statistics.

Our experimental observations show that the gate voltage pro-
duces the same effect as a displacement along the Ta wedge from the
region with D <0 (star in Fig. 1b) to the region with D > 0 (triangle in
Fig. 1b): starting from the regionwhere skyrmions haveCWchirality (as
represented in Fig. 1f), a positive gate-voltage leads to a reversal to
CCW chirality (as represented in Fig. 1i). Thus, a positive gate-voltage
induces interfacial magnetic properties similar to those of a less oxi-
dized interface.Wemay interpret this result either as a charge effect or
as a migration of oxygen ions away from the interface. The former
should produce an immediate effect whereas the latter is expected to
be slower, progressive and possibly persistent. Since our measure-
ments show that the reversal of the skyrmion motion occurs with a
certain latency, we propose that the driving mechanism is ion migra-
tion. Thepositive gate voltage acts as a local andprogressive reduction
of the FeCoB/TaOx interface, that progressively decreases iDMI,
eventually inverts its sign, thus triggering chirality reversal. Moreover,
the recovery of the as-grown chirality when switching-off the gate
voltage (Vg = 0) is consistent with the spontaneous progressive re-
oxidation of the FM/MOx interface observed in similar materials with
an equivalent timescale43.

Persistent and reversible control of chirality with gate voltage
Hereafter, we explore the chirality reversal process on labyrinthine
domains (see Fig. 2) obtainedbydecreasing the externalmagneticfield
to 30μT in a region of the sample similar to the one of Fig. 1 (d, e, g, h).
This magnetic configuration is more robust than skyrmions to small
changes of magnetic parameters and magnetic field11. Here, we focus
on the persistency of the effect of gate voltage on DW chirality. Thus,
the current injection experiments, to probe the chirality, were per-
formed after turning off the gate voltage.

Fig. 2 | Persistent and reversible chirality switch. In the region close to iDMI sign
inversion (star in Fig. 1b), the current density J (black arrow) induces a motion of
DWs (red/blue arrows for a motion along/opposite to the current density), as
observed by p-MOKE microscopy after switching off the gate voltage.
a–e observation of DW motion under zero gate voltage and μ0Hext≃ 30 μT, after
sequential 90s-long voltage pulses. f Schematic representation of the applied

voltage as a function of time. Initially aDWs have CW chirality; after a positive gate
voltage pulse (b), chirality is reversed to CCW under the ITO electrode; after a
negative gate voltage pulse (c), CW chirality is recovered ; after a positive gate
voltage pulse (d), chirality has switched again to CCW; e after waiting ~ 2 h with
zero gate voltage applied, the initial CW chirality is recovered. g Schematics of the
effect of gate voltage pulses on interface oxidation, DW chirality and iDMI.
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Figure 2 a shows the initial nearly demagnetized state with
labyrinthine domains. The pattern of the labyrinthine domains is
identical and continuous below and around the electrode. In the initial
state, before gate voltage application, the DWs move in the same
direction as the current, which is an indication of their CW chirality
(see Fig. 2a and Supplementary Video SV3). After the application of a
90s positive gate voltage pulse (Vg = 3V), theCIMof theDWsbelow the
electrode is reversed (see Fig. 2b and Supplementary Video SV4),
indicating a CCW chirality, which is due to an inversion of iDMI sign.
This result is similar to the one obtained for skyrmions, except that the
domain wall chirality is now probed≃ 5 s after the gate voltage has
been set to zero.

We further observed that a 90 s negative gate voltage pulse
(Vg = −2 V) restores the initial CW chirality (Fig. 2c and Supplementary
Video SV5). A subsequent 90 s positive gate voltage pulse (Vg = 3 V)
once again switches towardsCCWchirality (Fig. 2d and Supplementary
Video SV6). Thus, chirality can be reversibly controlled by gate voltage
and in apersistentway. It is reversed fromCWtoCCW(resp. fromCCW
to CW) with a positive (resp. negative) gate voltage, whichwe attribute
to reduction (resp. oxidation) of the FeCoB/TaOx interface (see Fig. 2g).

When the gate voltage is set to zero, the reversed CCW DWs of
Fig. 2d recover their initial CW chirality after about 2 h (Fig. 2e and
Supplementary Video SV7), which is longer than the previous experi-
ments on skyrmions for which only positive gate voltages were
applied (see previous section). In this second experiment, negative
voltages were applied, which induced further oxidization of the FM/
MOx interface. This is thermodynamically favorable due to the affinity
of metal for oxygen and induces a certain degree of irreversibility in
some FM/MOx systems21,31. The slight difference in FeCoB thickness
between skyrmion and stripe experiments may be at the origin of the
slower recovery of magnetic properties after the application of a
positive voltage. We suggest that the positive gate voltage drives
oxygen ions from their equilibrium position into a metastable less
oxidized state, in which they remain for some time after the gate vol-
tage has been turned off. The existence of such a metastable state has
been theoretically demonstrated at Fe/MgO interface, in the opposite
case, ie. when interfacial oxygen ismigrated towards thefirst Fe layer44.
The slow recovery of the initial state, also reported in other studies45,46,
corresponds to a return to a metastable state where Ta naturally re-
oxidizes. The timescale of this process is consistent with our hypoth-
esis of oxygen migration, which is known to occur in TaOx and ZrOx

32.
Finally, we have observed that chirality control can be achieved

either starting from a negative iDMI (zone indicated by the star in
Fig. 1b, see Fig. 2) or from a positive iDMI (zone indicated by the
triangle in Fig. 1b, see Supplementary section V), by applying a gate
voltage of appropriate polarity, as schematically represented in Fig. 2g.

Stability of skyrmions under chirality reversal: analytical model
and micromagnetic simulations
The observed inversion of the skyrmionCIMunder the application of a
gate voltage is the signature of a transition between CW andCCWNéel
skyrmions, which results from a iDMI sign inversion. In principle, this
transition is possible without unraveling the spin texture since CW
Néel, CCWNéel, and theexpected intermediate Bloch skyrmion at zero
iDMI share the same topology. However, even if this transformation is
topologically allowed, it may affect the energetic stability of the sky-
rmion, in particular the stability of the Bloch skyrmion at zero iDMI. In
the absence of stabilization by iDMI energy in thin films, only dipolar
energy and out of plane external magnetic field may stabilize Bloch
skyrmions47.

To evaluate the stability of skyrmions during the application of a
gate voltage, we have considered an analytical model describing the
energy difference between an isolated skyrmion bubble and the uni-
formmagnetic state34 (seeMethods). Themagnetic parameters used in
this analyticalmodel and their variationunder positive gate voltage are

those extracted from experimental measurements (see Supplemen-
tary section VI).

The model predicts that for both non-zero and zero iDMI, a sky-
rmion is stable for diameters around 1.5μm (see Fig. 3), close to the
experimental values. Only a slight change of equilibrium diameter is
expected, mostly due to the anisotropy variations under gate voltage,
since our iDMI values, relatively small (∣D∣ ≃ 10μJ/m2 interpolated from
BLSmeasurements, see Supplementary section VI), contribute little to
the total energy of the skyrmion. According to the model, it should be
possible to reverse the chirality of a single skyrmion without annihi-
lating it.

To better understand the mechanism of the chirality reversal, we
carried out micromagnetic simulations48 (see Methods). These enable
investigating the chirality reversal mechanism at small dimensions
inaccessible with the experimental setup of our study (Kerr micro-
scope resolution≃0.5μm). The magnetic parameters used in this
simulation (Co-basedmagneticparameters42, seeMethods) lead to sub-
micrometer size skyrmions, which are more relevant for applications.
These small skyrmions cannot be described by the previous analytical
calculations since their DW cannot be considered as infinitely thin with
respect to skyrmion diameter. By contrast, they are more adapted to
micromagnetic simulations as they require a reasonable number of
cells. For small skyrmions, the iDMI contribution to the total energy is
larger and wemay thus wonder if their stability might be affected. The
simulations were performed for iDMI value in the range �0:5;0:5½ �mJ/
m2. For each iDMI value, amagnetic skyrmion is stabilized, inparticular
for D =0 where a Bloch skyrmion is stable (see Fig. 4a–c). A typical
electricfield of E = 1 V/nm, below the breakdown electric field in similar
ZrOx-based sample43, is reasonable. A corresponding variation of iDMI
ofΔD = 1mJ/m2would require a iDMI variation efficiencyunder electric
field βiDMI =ΔD/E of 1000 fJ/(Vm). This is a proper order of magnitude
for ionic effects38 or in the case of ultrathin ferromagnets27.

In the center of theDW, the angle ξbetween the in-planemagnetic
moments and the radial direction, usually named helicity, evolves
gradually from ∣ξ∣ =0 atD = −0.5mJ/m2 (CWNéel, see Fig. 4a) to ∣ξ∣ =π
at D =0.5mJ/m2 (CCW Néel, see Fig. 4c) via a ∣ξ ∣= π

2 Bloch skyrmion
state atD =0 (see Fig. 4b). The radius variationbetweenNéel andBloch
skyrmion (from 165 to 22 nm, see Fig. 4f) is much larger than in the
analytical model prediction for FeCoB (see Fig. 3). This may be

Fig. 3 | Analytical model34: stability of skyrmions in FeCoB during iDMI inver-
sion induced by the gate voltage. Analytical calculation of energy difference (in
units of kBT300K) between skyrmion and uniform state for FeCoB as a function of
skyrmion radius. Solid orange, dashed green, and dash-dotted gray lines corre-
spond, respectively, to negative, zero and positive iDMI, associated with a pro-
gressive anisotropy variation under the gate voltage, as experimentally measured.
Owing to the small iDMI value in FeCoB, the slight change of equilibrium radius
(depicted by symbols) is mostly due to the anisotropy variation.
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explained by a larger decrease of domain wall energy thanks to iDMI
for the case of the Co-based sample (micromagnetic simulation).

In these zero temperature simulations, the evolutionof ξwith iDMI
(see Fig. 4d) presents a hysteretic behavior around ∣D∣ =0.35mJ/m2. It
corresponds to the beginning of the coherent rotation of themoments
in the DW, selecting one of the two degenerated states leading to a CW
or CCW Bloch skyrmion at D =0 (see Supplementary, section VII).

Discussion
Our observations of chirality reversal are due to gate voltage effect on
iDMI. The effective iDMI originates from the two FeCoB interfaces in
Ta/FeCoB/TaOx. At the bottom Ta/FeCoB interface, the Fert-Levy
mechanism49,50 is at the originof a small, negative iDMI contribution19,51

(typically −0.03mJ/m2). The origin of iDMI for the top FeCoB/TaOx

interface depends on oxidation state: (i) an underoxidized FeCoB/Ta
top interface leads to a dominant Fert-Levy contribution to iDMI, with
opposite sign with respect to the iDMI from the bottom interface and
with larger magnitude due to intermixing51. This leads to a positive
effective iDMI. (ii) By contrast, by gradually oxidizing this interface, the
interfacial electric field at the origin of Rashba effect52 is modified,
resulting in a contribution to iDMI18 found to be negative in this
system38 (in ref. 38, the convention for iDMI sign is opposite to the one
used in the present article). Towards the more oxidized region, this
Rashba contribution becomes dominant and determines the negative
sign of the effective iDMI. Our experiments are done in the region
where the contributions from the two interfaces almost cancel each
other. Then, iDMI values are very small (∣D∣ ≃ 10μJ/m2) and should
result in hybrid Bloch-Néel domain walls, so called Dzyaloshinskii
walls9 (see Supplementary section VII, Fig. S9 (d, f, h, j)). However, the
observedCIMparallel (resp. antiparallel) with the current density is the
expected behavior of CW (resp. CCW) Néel DWs. In any case, an
inversion of the iDMI sign leads to the inversionof theNéel component
of the DW, which similarly leads to an inversion of the CIM direction.

It has been demonstrated that the perpendicular magnetic ani-
sotropy and the iDMI have common origins, and are thus both sensi-
tive to gate voltage18 and oxidation22. Then, similarly to voltage control
ofmagnetic anisotropy28 (VCMA), an applied gate voltage can produce
instantaneous reversible charge effects on iDMI38 or persistent ones
linked to ionic migration (see Supplementary of ref. 38). The relative
contribution of charge and ionic effects on interfacial magnetism
therefore depends on both the thickness of the ferromagnetic film and
the oxidation of the FM/MOx interface. In the case of charge effects,
the short screening length in metals (shorter than the FeCoB film
thickness) would mainly modify charge distribution at the interface
with the oxide. The addition of the applied electric field to the Rashba-
field could reverse the total interfacial electric field, inducing an
inversion of iDMI sign.

Nevertheless, we have shown that the effect of the gate voltage
produces a similar effect as a displacement along the oxidation gra-
dient. This is consistent with oxygen ion migration affecting the top
FeCoB/TaOx interface. This migration induced by gate voltage may
lead to a transition between negative Rashba and positive Fert-Levy
contribution to iDMI.Asweobservedpersistent effecton the timescale
of minutes, we propose that oxygen ionic migration is the dominant
mechanism observed in our study, as these ions are themobile species
in ZrO2. The top-Ta nominal thickness varies by 0.015 nm over the
region of interest (from triangle to star positions in Fig. 1c). Hence, the
iDMI sign change is caused by the equivalent of 0.05 monolayer var-
iation of the oxygen content at the FeCoB/TaOx interface. As pre-
viously discussed, a Ta thickness variation and a gate voltage
application induce anequivalent slight change in oxidation. At a buried
interface, such a small gate induced variation of a light element is
challenging to observe using conventional microscopy techniques.
However, monitoring the current-induced motion of chiral spin tex-
tures on a double wedge sample provides a powerful tool to access
such small changes in composition.

Fig. 4 | Micromagnetic simulations of chirality switch. Simulated stable states
show a gradual transition between a CW Néel skyrmion at D = −0.5mJ/m2 and
c CCWNéel skyrmion at D =0.5 mJ/m2 via b a stable Bloch skyrmion state at D =0.
d Angle ξ between the in-plane magnetic moments and the radial direction of the

magnetic moments at the domain-wall center and e radius of the skyrmion as a
function of the iDMI value. The helicity and radius of the skyrmion corresponding
to a–c images are shown, respectively, in d, e by the star, square and triangle
symbols.
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Since iDMImay also be tuned by charge effects38 that occur as sub-
nanosecond timescale53, we may envision an ultra fast switch of sky-
rmion chirality through a transient Bloch state. Furthermore, contrary
to a current polarity inversion, which would invert similarly themotion
direction of all skyrmions in the track, a gate voltage would provide a
simple and local method to individually control skyrmions. Notably,
their individualmotion tuning canbe fully exploited in race logicwhere
information is stored in propagation time54,55. Eventually, due to the
persistency of the effect, we may envision their use in artificial neural
networks based on cross bar geometries56 with multiple gates to
dynamically and reversibly control the exact path of each input sky-
rmion. Besides, skyrmion motion along a track could be stopped by a
Néel to Bloch transition using a gate voltage. This would enable an
alternative realization of a skyrmion transistor hitherto proposed using
VCMA57,58. Finally, this chirality switch offers a new degree of freedom,
which could be used in reversible and programmable logic gates.

In summary, we have demonstrated a gate-voltage induced
reversal of skyrmion chirality in Ta/FeCoB/TaOx through the inversion
of their current-inducedmotion direction. Besides, we also observed a
local, persistent and reversible chirality reversal of labyrinthine chiral
domainwalls by gate voltage. These reversals aredue to an inversionof
the iDMI sign and explained by the gate-controlledmodification of the
oxidation state at the ferromagnet/oxide interface. Micromagnetic
simulations support the feasibility of a chirality reversal for sub-
micronic skyrmions without annihilation. Such local and dynamical
degree of freedom at the nanometer scale, controlled with voltages
compatible with applications (∣Vg∣ ≃ 2−3 V), would lay the foundations
for efficient and multifunctional architectures involving magnetic
skyrmions as information carriers.

Methods
Sample preparation
The base sample consists in a Ta(3)/FeCoB(1.1–1.3)/Ta(0.85–1) (nom-
inal thicknesses in nm) crossed double wedge trilayer grown by mag-
netron sputtering on a thermally oxidized Si/SiO2 wafer

59. The top-Ta
wedge was further oxidized in a treatment chamber (oxygen pressure
150mbar for 10 s) thus leading to an oxidation gradient at the top
interface (see Fig. 1b). In order to protect from further oxidation, a
0.5nm layer of Al was deposited and subsequently oxidized at air when
taking the sample out of the sputtering machine. The final stack thus
consists in a Ta(3)/FeCoB(1.1–1.3)/TaOx(0.85–1)/AlOx(0.5) (thicknesses
in nm). Then, the sample was annealed (225 ∘C for 30min) and a 20nm
ZrO2 oxide was deposited by atomic layer deposition. This oxide layer
acts as a dielectric and a ionic conductor. For this study, we restricted
ourselves to constant ferromagnetic thicknesses (tFeCoB≃ 1.2 nm for
skyrmion observation of Fig. 1 and tFeCoB≃ 1.1 nm labyrinthine pattern
of Fig. 2), thus simplifying the sample to a single top-Ta wedge, as
shown in Fig. 1b. The wedge of FeCoB was only used in the determi-
nation of some parameters (see Supplementary section VI). Finally,
70 nm transparent ITO electrodeswerepatterned by laser lithography.
The size of the electrodes is 100 × 800μm2.

Skyrmion observation, current-induced motion
The use of p-MOKE under transparent ITO electrodes allows probing
the magnetization configuration both under and around the electro-
des. Differential imaging is used in order to improve the contrast (the
reference is the saturatedmagnetic state). Under ITO (resp. around it),
black (resp. gray) regions correspond to magnetization pointing up,
and white (resp. black) regions to magnetization pointing down. This
variation of contrast might be explained by anti-reflecting effect from
the ITO electrodes.

The skyrmion or labyrinthine phase (resp. in Figs. 1 and 2) is
obtained by applying a constant perpendicular field (μ0Hext of 80 and
30μT, respectively, including Earth field), after saturating the mag-
netic statewith afieldof samepolarity.Meanwhile, a current is injected

via microbonded wires in the trilayer plane before applying any gate
voltage inorder to probe the initial chirality through theCIMdirection.
Then, the current is turned off and at this point, the measurement is
different between skyrmions and labyrinthine domains.

For skyrmions, a gate voltage is continuously applied. During this
time, chirality is regularly probed (every≃20 s) by injecting current
during sufficient time for the CIM to be measured.

For labyrinthine domains, voltage pulses are applied on the gate
and CIM is measured after each pulse, i.e., when the voltage is
turned off.

In differential imaging, mechanical drift can degrade the con-
trasts. To avoid it, the reference is renewed before each CIM mea-
surement (short pulse of largemagnetic field at which a new reference
is taken). Finally, to illustrate the motion, a color-coded set of arrows
indicates the CIM direction in Figs. 1 and 2.

Direct iDMI measurements via Brillouin light scattering
The BLS setup used in this study consists of a linearly polarized LASER
beam (λ = 532nm) sent on the magnetic sample in the Damon-Esbach
geometry (magnetization perpendicular to the light’s incidence plane).
The interaction of light with the spin waves can lead to the absorption
or creation of a magnon, respectively called the Stokes and anti-Stokes
event, that increases or decreases the frequency of the backscattered
photons. The frequency spectrum of the backscattered photons in
obtained by a tandem Fabry-Pérot interferometer. The frequency shift
between theStokes andanti-Stokes events is directly related to the iDMI
constant D through Δf = 2γ

πMS
DkSW. In our configuration, the incident

angle of light is 60°, inducing kSW = 20.45/μm. Moreover, the magneti-
zation Ms= 1.54 ± 0.06MA/m was extracted from VSM measurements
and the gyromagnetic ratio has been taken to γ

2π =28:5 GHz/T.

Analytical model and micromagnetic simulations
The analytical model from ref. 34 estimates the energy difference
between an individual skyrmionof radiusR and the saturatedmagnetic
state. Onemust notice that thismodel is valid forQ= Ku

Kd
>1, where Ku is

the uniaxial anistropy and Kd =
1
2μ0M

2
s is the shape anisotropy con-

stant. In our case, we can extract from experimental parameters
Q = 1.02, lying in the area of validity of the model. In this model, the
energy difference between an individual skyrmion state and the satu-
rated magnetization state is written as

ΔEsb = 2πRtσDW +2πR2tμ0MSHext � πt3μ0M
2
SIðdÞ ð1Þ

where σDW is the domainwall energy (containing exchange, anisotropy
and iDMI energy), t is the ferromagnetic layer thickness,R is the bubble
radius, MS is the saturation magnetization, μ0Hext is the applied mag-
netic field and I(d) is defined as

IðdÞ= � 2
3π

d d2 + 1� d2
� � Eðu2Þ

u
� Kðu2Þ

u

� �
ð2Þ

where d = 2R
t , u=

d2

1 +d2 and E(u), K(u) are elliptic integral defined as

EðuÞ=
Z π=2

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� u sin2ðαÞ

q
dα ð3Þ

KðuÞ=
Z π=2

0

dαffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� u sin2ðαÞ

q ð4Þ

The parameters used in the analytical model are the FeCoB experi-
mental parameters. The saturationmagnetizationMs = 1.54± 0.06MA/
m was measured with Vibrating Sample Magnetometer (VSM).
The uniaxial anisotropy field μ0HK = 40mT, and its variation under the
application of a positive gate voltage wasmeasured through hard-axis
hysteresis loop (see Supplementary section VI). The FeCoB thickness
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tFM =0.57 nm was used to take into account a magnetically dead layer,
estimated with VSM measurements versus FeCoB nominal thickness.
The exchange stiffness was fixed to Aex = 12 pJ/m38. Finally, an external
magnetic field μ0Hext = −750μT was set in a direction opposite to the
magnetization in the core of the skyrmion (destabilizing field).

Using micromagnetic simulations (Mumax348), we computed an
isolated skyrmion in an infinite magnetic thin film by computing the
demagnetizing field from an infinite sample acting on the simulation
region (See Supplementary section VII).

The magnetic parameters for the simulation are Ms = 1.42MA/m
(magnetization), tFM =0.9 nm (ferromagnetic thickness), Ku = 1.27 ×
106 J/m3 (uniaxial anisotropy), α = 0.37 (Gilbert damping), and Aex =
16 pJ/m (exchange stiffness). In addition to the dipolar field, an addi-
tional homogeneous magnetic field is set to μ0Hz = − 6mT (destabi-
lizing field). The simulation region is a 512 nm square, with amesh size
1 nm× 1 nm×0.9 nm.

First, we checked for the stabilization of a skyrmionwith a positive
iDMI value D =0.5mJ/m2 (Fig. 4c). Then, we decreased the iDMI value
fromD =0.5mJ/m2 toD = −0.5mJ/m2 by stepof 5%and checked for the
stabilization of skyrmion at each step. Finally, with the same proce-
dure, we increased the iDMI value back to the initial D = 0.5mJ/m2. In
this simulation, the magnetic moments in the center of the DW
experience a CCW in-plane rotation for both the decrease and the
increase of iDMI. As a result, a CW Bloch skyrmion is observed for the
decrease (see Fig. 4b) and a CCW for the increase of iDMI (see Sup-
plementary section VII).

Data availability
The MOKE data generated and analyzed in this study are provided in
the Supplementary Information/Source Data file. The BLS data used in
this study are available from the corresponding author on reasonable
request.

Code availability
The customcodes used during the current study are available from the
corresponding author on reasonable request.
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